Infineon Shows Advantages and Challenges in Using Electric Motors and Silicon Carbide Power Semiconductors in the Commercial Vehicle Industry

Advantages and challenges in using electric motors and silicon carbide power semiconductors in the commercial vehicle industry

This article deals with the commercial vehicle sector in terms of CO₂ reduction, the technological drivers in the future for the powertrain and looks at modern semiconductor components based on Silicon Carbide (SiC), which enable the smaller, more efficient, and more power converters. Even more than for passenger cars, no uniform scenario will prevail in this sector due to the different drive architectures.

Advantages and challenges of electric motors in commercial vehicles

The targets emission standards formulated in many parts of the world for the reduction of greenhouse gas and pollutant emissions in transportation have ensured that electric drives have come to the fore. In addition to passenger cars, an increasing number of commercial vehicles such as trucks, buses, vans, or agricultural and construction vehicles are also being powered electrically. This makes them more environmentally friendly, quieter, and more efficient than their predecessors with combustion engines. Electrified commercial vehicles are also attractive to owners and operators, in terms of cost of ownership, maintenance and malfunction. This results in higher productivity and better return on investment.

A major advantage of the electric motor is its high efficiency. With a combustion engine, efficiency varies hugely, particularly when under variable or partial loads. In extreme cases, this can drop to 15 percent or less. An electric motor’s efficiency is not dependent on its operating point. Under the same operating conditions, the electric motors and inverters that make up an electric drive system will achieve much higher levels of efficiency. At their best, electric drive trains can achieve in excess of 80 percent efficiency. This is only possible because the power electronic section itself can reach efficiency levels of up to 85 percent.

Important factors to consider when designing or selecting an inverter include power density, reliability, robustness, efficiency, and security. Additionally, and particularly in the commercial sector, the long-term effect that harsh operating conditions may have on total life expectancy must also be taken into account. Generally speaking, the conditions are much more challenging than those faced by passenger cars. Developing inverters
according to these criteria requires deep application knowledge, as well as a semiconductor portfolio that covers power and driver modules, sensors, and microcontrollers.

System diagram – drive inverters for commercial vehicles.

Silicon Carbide (SiC) – new opportunities for the commercial vehicle industry

Even more, than in many passenger car models, a high range and long battery life is important in commercial vehicles. Since the battery also takes up a large installation space, there is a demand for power electronics with high efficiency. These enable the construction of more efficient traction converters but also save energy in smaller applications. These include hydraulic pumps, compressors in air conditioning and refrigeration units, and onboard chargers.

Components based on Silicon Carbide (SiC) offer significant improvements in these applications. In general, the technology incurs lower losses under the same load profile than power MOSFETs and IGBTs. This means they offer increased switching and current-carrying efficiency, advantages that come into effect at higher intermediate circuit voltages. Because of these attributes, SiC-based semiconductors are especially well suited to electric vehicles equipped with batteries that have higher voltages and total storage capacity. And because SiC devices are also able to operate at higher voltages, they can enable onboard charging solutions that deliver shorter charging times and lower total losses.

Higher power density achieved with Silicon Carbide.

The inverter that controls the electric traction motor is a good example of a centralized system within a drive train. In terms of efficiency, these systems can benefit from using SiC components. The core function of the inverter is to convert a DC voltage into a three-phase AC voltage that is used to drive the motor. They also operate in reverse during regenerative breaking, which captures the vehicle’s kinetic energy to create a DC voltage used to recharge the vehicle’s battery. The efficiency of the system can only be maximized when the losses inherent in energy conversion are low.

Compared to conventional silicon, the improved conductivity of SiC components reduces these conversion losses, a large part of which is experienced in form of heat. The higher efficiency of SiC-based inverters helps maximize the driving range of eclectic vehicles, making the most efficient use of the limited battery capacity. Besides their advantage in terms of efficiency, inverters based on SiC-based components also exhibit higher power densities. This means that SiC-based inverters can be made physically smaller requiring less installation space.

Source: Infineon